21st Century Townhouse
In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI

PCD 04473

Maine Residence
This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot-water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA

PCD 04470

Obtained and made public by the Natural Resources Defense Council, March/April 2002
In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI
Maine Residence

This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot-water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA.
To: knutson@eop.eop.gov
cc: Robert Dixon, William Parks
Subject: Solar Home

Shea Homes Broc
Obtained and made public by the Natural Resources Defense Council, March/April 2002

Shea Homes

...by construction...

...and regulation for ongoing fuel use...

...at every opportunity...

...for the environment...

...and comfort of the home...

...at minimal emissions and air pollution...

...dependence on natural gas...

...for your future...

...gives and gains (solar energy)...
21st Century Townhouse
In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI

PCD 04473

img04473
In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI.
Maine Residence
This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot-water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA
Maine Residence

This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot-water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA.
21st Century Townhouse
In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI

PCD 04473

Maine Residence
This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot-water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA

PCD 04470

Obtained and made public by the Natural Resources Defense Council, March/April 2002
In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI
Maine Residence

This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA
Obtained and made public by the Natural Resources Defense Council, March/April 2002
Obtained and made public by the Natural Resources Defense Council, March/April 2002.
21st Century Townhouse

In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI

PCD 04473

img04473
In 1996, the National Association of Home Builders constructed advanced townhouses featuring energy-efficient materials and systems at the National Research Home Park 21st Century Townhouse, in Bowie, Maryland. The townhouse on the right has an integrated photovoltaic standing-seam roof; the photovoltaic modules look and perform like the standard metal roofing on the other units (on the left), but they also produce electricity. The solar roofing system, developed by United Solar Systems Corporation and Energy Conversion Devices, is designed to serve as a direct replacement for standard architectural metal roofing panels. Photo credit: Tim Ellison, Energy Conversion Devices, Troy, MI.
Maine Residence
This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot-water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA

PCD 04470

Obtained and made public by the Natural Resources Defense Council, March/April 2002
Maine Residence

This house in coastal Maine generates its own electricity from a 4.25-kilowatt photovoltaic system beautifully integrated into the rooftop. The south roof incorporates an integrated array of solar thermal collectors and large-area photovoltaic modules to form a single, uniform glass pane. Through a net-metering arrangement with Central Maine Power, surplus solar electricity is exported to the utility grid, effectively spinning the utility meter backward. Space heating and domestic hot-water are provided by the solar thermal system. Photo credit: Solar Design Associates, Harvard, MA.