HIGH TEMPERATURE GAS REACTORS HAVE UNIQUE ABILITY TO USE BRAYTON CYCLE

- 50% Increase
- GT-MHR
- GAS TURBINE CYCLE (BRAYTON)
- STEAM CYCLE (RANKINE)
- WATER REACTOR

PLANT EFFICIENCY

TURBINE INLET TEMPERATURE, °F

400 1000 1600
TECHNOLOGY ADVANCEMENTS HAVE ENABLED THE GT-MHR

- Small Passively Safe Modular Helium Reactor
 - turbine size requirements reduced
 - insensitive to turbine failure accidents
- Large Gas Turbine Engines
 - significant increase in industrial applications
 - size now match modular reactor size
- Magnetic Bearings
 - eliminates oil ingress concerns
 - improves performance and reliability
 - rapidly increasing industrial experience; larger sizes
- Compact Heat Exchangers
 - dramatically improves efficiency
 - size improves design integration
 - extensive fossil operating experience

GENERAL ATOMICS
600 MW(t) GT-MHR REDUCES POWER COST BY 45% COMPARED TO 350 MW(t) STEAM CYCLE

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Normalized Busbar Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 MW(t) MHR-SC 38%</td>
<td>1.0</td>
</tr>
<tr>
<td>450 MW(t) MHR-SC 38%</td>
<td>0.87</td>
</tr>
<tr>
<td>450 MW(t) MHR-GT 48%</td>
<td>0.65</td>
</tr>
<tr>
<td>600 MW(t) MHR-GT 48%</td>
<td>0.55</td>
</tr>
</tbody>
</table>

45%
IN SUMMARY, GT-MHR IS A GENERATION IV SYSTEM

- Inherent safety Features - No core melt
- High thermal efficiency resulting Lower Cost
- Significantly reduced environmental impact
- Superior radio-nuclide retention for long-term spent disposal
In Russia under joint US/RF agreement for management of surplus weapons Pu

Sponsored jointly by US (DOE) and RF (Minatom);
supported by Japan and EU

Conceptual design completed; preliminary design complete early 2002
INTERNATIONAL GT-MHR PROGRAM

- Design, construct and operate a prototype GT-MHR module by 2009 at Tomsk, Russia
- Design, construct, and license a GT-MHR Pu fuel fabrication facility in Russia
- Operate first 4-module GT-MHR by 2015 with a 250 kg plutonium/year/module disposition rate

\[\text{\ldots Fuel contains Pu only} \]
\[\text{\ldots No fertile component} \]
Russian Technological Developments. Recuperator

Heat Exchange Element Fabrication

Recuperator Heat Exchange Element

Tests of full scale heat exchange element in helium test facility
COMMERCIALIZATION PROGRAM

COMMERCIAL PROGRAM = INTERNATIONAL PROGRAM TECHNOLOGY + URANIUM FUEL RATHER THAN Pu FUEL

Plant construction can start in 5 years

GENERAL ATOMICS
COMMERCIAL PROGRAM FOLLOWS INTERNATIONAL PROGRAM

<table>
<thead>
<tr>
<th></th>
<th>'02</th>
<th>'03</th>
<th>'04</th>
<th>'05</th>
<th>'06</th>
<th>'07</th>
<th>'08</th>
<th>'09</th>
<th>'10</th>
<th>'11</th>
<th>'12</th>
<th>'13</th>
<th>'14</th>
<th>'15</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERNATIONAL PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Design and Devel</td>
<td></td>
</tr>
<tr>
<td>Prototype Licensing</td>
<td></td>
</tr>
<tr>
<td>Prototype constr</td>
<td></td>
</tr>
<tr>
<td>Prototype Startup</td>
<td></td>
</tr>
<tr>
<td>Full Power Operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'02</td>
<td>'03</td>
<td>'04</td>
<td>'05</td>
<td>'06</td>
<td>'07</td>
<td>'08</td>
<td>'09</td>
<td>'10</td>
<td>'11</td>
<td>'12</td>
<td>'13</td>
<td>'14</td>
<td>'15</td>
</tr>
<tr>
<td>GT-MHR COMMERCIAL PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Prel Design</td>
<td></td>
</tr>
<tr>
<td>SAR</td>
<td></td>
</tr>
<tr>
<td>SER</td>
<td></td>
</tr>
<tr>
<td>Final Design</td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
</tr>
<tr>
<td>- Automated FF Pit</td>
<td></td>
</tr>
<tr>
<td>- Qualified Fuel</td>
<td></td>
</tr>
<tr>
<td>First Comm Pit</td>
<td></td>
</tr>
<tr>
<td>- First Order Constr</td>
<td></td>
</tr>
<tr>
<td>- Operation Mod 1</td>
<td></td>
</tr>
<tr>
<td>- Operation Mod 2</td>
<td></td>
</tr>
<tr>
<td>- Operation Mod 3</td>
<td></td>
</tr>
<tr>
<td>- Operation Mod 4</td>
<td></td>
</tr>
</tbody>
</table>

Complete Design & Development, **Construction License**, **Complete Proto Constr**, **Complete Proto Demo**, **Start Full Power Ops**, **Complete Plant Preliminary Design**, **Complete SAR**, **Complete SER**, **Complete Final Design**, **Complete Automated Fuel Fab Plant Pilot Plant**, **Complete Tests**, **Ltr of Intent**, **Order for First Comm Plant**, **Start Plant Construction**, **Startup of Module 1**, **Mod 2**, **Mod 3**, **Mod 4**
LIMITED ENGINEERING WORK REQUIRED

COMMERCIAL PLANT ENGINEERING

- Prepare Incremental Design Items
- Performance Assessments
- Transfer International Program Technology
- Safety and Licensing
- Define Commercial Plant Requirements
PLANT REQUIREMENTS PLANNED FROM SEVERAL SOURCES

Externally Imposed Requirements
- US regulatory requirements
- US codes and standards

Utility/User Requirements
(safety, economics, etc)

Technology from International Program

COMMERCIAL PLANT REQUIREMENTS
TECHNOLOGY TRANSFER ACTIVITIES

INTERNATIONAL PROGRAM TECHNOLOGY

→ Preparation of SDDs to US standards
 - info from equivalent docs prepared to Russian stds

→ Adaptation of design & tech dev reports
 - verify compliance to US requirements

→ Adaptation of dwgs & specs
 - convert to US codes and stds

GENERAL ATOMICS
INCREMNENTAL ENGINEERING WORK

INCREMNENTAL ENGINEERING

Low Press, Vented (LPV) Reactor Bldg

60 hz Power Generation

Uranium Fuel Fab Plant Design & Qual

RCCS for LPV

Uranium Core Design

......No New R&D

DOE002-0951

Obtained and made public by the Natural Resources Defense Council, March/April 2002